Prime numbers and Proof

What do I need to be able to do?

By the end of this unit you should be able to:
Find and use mutiples

- Identify factors of numbers and expressions

Recognise and identify prime numbers
Recognise square and trianovalar numbers
Find common factors incuding HCF
Find common mutiples including LCM

Keywords

Mutiples: found by multipling any number by positive integers
Factor: integers that muttiply together to get another number.
Prime: an integer with only 2 factors.
I Conjecture: a statement that might be true (based on reasoning) but is not proven.
II Counterexample: a special type of example that disproves a statement.
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)
II HCF: highest common factor (biggest factor two or more numbers share)
I I LCM: lowest common multiple (the first time the times table of two or more numbers match)

Mutiples The "times tabke of a given number all the numbers in this lists below are mutiples of 3 .
$3,6,9,12,15 \ldots$
end
Non example of a multiple

${ }_{1}^{1} 1$ Factors

isquare and triangular numbers

LCM - Lonest common mutiple
LCM of 9 and I2
$9 \quad 9,18,27,3645,54$
$12 \quad 12,24,36,48,60$

I Comparing fractions

Conjectures and counterexamples

Conjecture
Counterexamples

Only one counterexample is needed to disprove a conjecture

a pattern that is noticed for many cases

Product of prime factors
Common mutliples are muttiples two or more numbers share

