y agoras eorem

What do I need to be able to do?
 By the end of this unit you should be able to:

- Use square and cube roots
- Identify the hypotenuse
- Calculate the hypotenuse
- Find a missing side in a Right angled triangle
- Use Pythagoras' theorem on axes
- Explore proofs of Pythagooras' theorem

Keywords

Square number: the output of a number mutiplied by itseff

Square root: a value that can be mutiplied by itseff to give a square number
Hypotenuse: the largest side on a right angled triangle. Always opposite the right angle.
Opposite: the side opposite the angle of interest
adjacent: the side next to the angle of interest
square of the hypotenuse

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

The hypotenuse is aways the longest side on a triangle because it is opposite the biggest angle.

Calculate the hypotenuse

Hypotenuse
$a^{2}+b^{2}=$ hypotenuse 2

I Substitute in the values for a and b

2 To find the hypotenuse square root the sum of the squares of the shorter sides
$3^{2}+6^{2}=$ hypotenuse 2
$9+36=$ hypotenuse 2
$45=$ hypotenuse 2
$\sqrt{45}=$ hypotenuse
$6.71 \mathrm{~cm}=$ hypotenuse

Caluate mising sides

(a) 12 cm

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

$$
12^{2}+b^{2}=15^{2}
$$

I Substitute in the values you are given
$144+b^{2}=225$

- 144

Rearrange the equation by subtracting the shorter square from the hypotenuse squared

> Square root to
find the length of the side
$b^{2}=111$
$b=\sqrt{111}=10.54 \mathrm{~cm}$
 coordinate axis

The line segment is the hypotenuse

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

The lengths of a and b are the sides of the triangle.

