SEQUENCES

Arithmetic or linear sequences increase or decrease by a common amount each time. Geometric series has a common multiple between each term. **Quadratic sequences** include an n^2 . It has a common second difference. Fibonacci sequences are where you add the two previous terms to find the next term.

Year 10 SEQUENCES

Key Concepts Arithmetic sequences increase or decrease by a common amount each time.

Quadratic sequences have a common 2^{nd} difference.

Fibonacci sequences Add the two previous terms to get the next term

Geometric series has a common multiple between each term

A hegartymaths 198, 247-250, 264

Nth term

Linear sequence 4, 7, 10, 13, 16 a) State the nt 3n + 1 Difference	es: h term b) ^v in t in t e 0 th term	Examples What is the 10 the sequence 3n + 1 $3 \times 100 + 1$	00 th term ? = 301	c) Is 1(1 Yes a	D0 in this seq 3n + 1 = 10 3n = 99 n = 33 as 33 is an int	uence? 0 :eger.
Quadratic sequences: 2a = 4 $3aa = 2 3 \times$	$\frac{a+b}{3a}$ $+b=6$ $2+b=6$ $b=0$	$\begin{array}{cccc} + c & 3 & 9 \\ + b & 6 & 10 \\ \hline 2a & 4 \\ a + b + c = \\ 2 + 0 + c = \\ c = 1 \end{array}$	19 33) 14 4 4 3 3	51 18 $[2n^2 + 0]$	First difference Second differ $n + 1 \rightarrow 2n^2$	ce ence ² + 1
Key Words Linear Quadratic Arithmetic Geometric Sequence	A) 1, 8, 15, 22, 1) Find the r B) Find the nth 1) 5, 12, 2	, nth term b) Calo h term for: 23, 38, 57,	2) 3, 11,	50 th term 25, 45, 7:	c) Is 120 in the s 1,	equence?