SEQUENCES

Key Concepts

Arithmetic or linear sequences
increase or decrease by a
common amount each
time.
Geometric series has a common multiple between each term. Quadratic sequences include an n^{2}. It has a common second difference.
Fibonacci sequences
are where you add the two previous terms to find the next term.

Linear/arithmetic sequence:

a) State the nth term

b) What is the $100^{\text {th }}$ term in the sequence?

$$
\begin{gathered}
3 n+1 \\
3 \times 100+1=301
\end{gathered}
$$

c) Is 100 in this sequence?

$$
\begin{gathered}
3 n+1=100 \\
3 n=99 \\
n=33 \\
\text { Yes as } 33 \text { is an integer. }
\end{gathered}
$$

Hint: Firstly write down the number of matchsticks in each image:

$$
7 n+1
$$

Examples

Linear sequences with a picture:

State the nth term.

Quadratic sequence e.g. $n^{2}+4$ Find the first 3 numbers in the sequence
First term: $1^{2}+4=5 \quad$ Third term: $3^{2}+4=13$
Second term: $2^{2}+4=8$

Key Words Linear Arithmetic
Geometric Sequence
Nth term

1) $1,8,15,22, \ldots$
$\begin{array}{lll}\text { a) Find the nth term } & \text { b) Calculate the } 50^{\text {th }} \text { term } & \text { c) Is } 120 \text { in the sequence? }\end{array}$
2) $n^{2}-5$ Find the first 4 terms in this sequence

Year 10

SEQUENCES

Key Concepts

Arithmetic sequences
increase or decrease by a common amount each time.

Quadratic sequences have a common $2^{\text {nd }}$ difference.

Fibonacci sequences

Add the two previous terms to get the next term

Geometric series has a common multiple between each term

Linear sequences:
$4,7,10,13,16$.....
a) State the nth term

Difference ${ }^{\text {The }} 0^{\text {th }}$ term

Examples

b) What is the $100^{\text {th }}$ term
in the sequence?
$3 n+1$
$3 \times 100+1=301$

$$
\begin{array}{ccccccl}
a+b+c & 3 & 9 & 19 & 33 & 51 & \\
\hline 3 a+b & 6 & 10 & 14 & 18 & \text { First difference } \\
\hline \underline{2 a} & 4 & 4 & 4 & & \text { Second difference }
\end{array}
$$

$$
\begin{array}{ccc}
2 a=4 & 3 a+b=6 & a+b+c=3 \\
a=2 & 3 \times 2+b=6 & 2+0+c=3 \\
b=0 & c=1
\end{array}
$$

Key Words Linear Quadratic Arithmetic Geometric

Sequence Nth term
A) $1,8,15,22, \ldots$

1) Find the nth term \quad b) Calculate the $50^{\text {th }}$ term \quad c) Is 120 in the sequence? B) Find the nth term for:
2) $5,12,23,38,57,$.
3) $3,11,25,45,71, \ldots$
