VOLUME AND SURFACE AREAS OF CYLINDERS

Key Concepts

A cylinder is a prism with the cross section of a circle.

The volume of a cylinder is calculated by $\pi r^{2} h$ and is the space inside the 3D shape

The surface area of a cylinder is calculated by $2 \pi r^{2}+\pi d h$ and is the total of the areas of all the faces on the shape.

From the diagram calculate:

Examples

a) Volume
$V=\pi \times r^{2} \times h$
$V=\pi \times 4^{2} \times 10$

$$
V=160 \pi
$$

$$
\text { Or }=502.65 \mathrm{~cm}^{3}
$$

b) Surface Area - You can use the net of the shape to help you

Area of two circles

$$
=2 \times \pi \times r^{2}
$$

$$
=2 \times \pi \times 4^{2}
$$

$$
=32 \pi
$$

Area of rectangle

$$
\begin{aligned}
& =\pi \times d \times h \\
& =\pi \times 8 \times 10 \\
& =80 \pi
\end{aligned}
$$

$$
\text { Surface Area }=32 \pi+80 \pi
$$

$$
=112 \pi
$$

$$
\text { or }=351.86 \mathrm{~cm}^{3}
$$

e. hegartymaths 572, 586

Key Words Cylinder Surface Area Radius Diameter Pi
Volume
Prism

Calculate the volume and surface area of this cylinder

VOLUME AND SURFACE AREA OF PRISMS

Key Concept

The volume of an object is the amount of space that it
occupies. It is measured in units cubed e.g. cm^{3}.

To calculate the volume of any prism we use:

A prism is a 3D shape which has a continuous cross-section.
The surface area of an object is the sum of all of its faces. It is measured in units squared e.g. cm^{2}.

穴 hegartymaths

 568-571, 584-586
Key Words

Volume Capacity Prism Surface area Face

Find the volume and surface area of each of these prisms:
1)

2)

VOLUME AND SURFACE AREA OF CONES, SPHERES AND PYRAMIDS

Key Concepts

In your exam you will be given the following formulae to use: Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Surface area of a sphere $=4 \pi r^{2}$

Volume of a cone $=\frac{\pi r^{2} h}{3}$
Surface area of a cone $=\pi r^{2}+\pi r l$

In your exam you will need to know the following formulae: Volume of a pyramid $=\frac{\text { base area } \times \text { height }}{3}$

Examples \quad Volume of a pyramid $=\frac{(3.2 \times 3.2) \times 7}{3}$

Slanted height $=\sqrt{7^{2}+1.6^{2}}$

$$
=\sqrt{51.56} \mathrm{~cm}
$$

Surface area $=$ base +4 triangles

We will need to find the slanted height to be able to calculate the area of our triangles.

Area of 4 triangles $=$

$$
4\left(\frac{3.2 \times \sqrt{51.56}}{2}\right)
$$

$$
=45.96 \mathrm{~cm}^{2}
$$

\% hegartymaths

576-579, 587

Key Words
Surface Area
Volume
Sphere
Cone
Pyramid
Radius
Height
Slanted length

Calculate the volume and surface area of:
1)

2)

