Year 9 EXPAND AND SIMPLIFY BRACKETS

2) (a) 6(m + 2t) (b) 3(3t - p)

Key Concepts

Expanding brackets

Multiply the number outside the brackets with EVERY term inside the brackets

Factoring expressions

Take the highest common factor outside the bracket.

Key Words

Expand

Factorise

Simplify

A hegartymaths 160, 161, 168, 189, 105, 106

	Expand and simplify where appropriate 1) $7(3 + a) = 21 + 7a$	
	2) $2(5 + a) + 3(2 + a) = 10 + 16$	2a + 6 + 3a = 5a
	3) Factorise $9x + 18 = 9(x + 2)$	
2	4) Factorise $6e^2 - 3e = 3e(2e - 1)$	
	Questions	
	 1) Expand and simplify (a) 3(2 - 7f) (b) 5(m - 2) + 6 	(c) 3(4 + t) + 2(5 + t)
	2) Factorise (a) 6m + 12t (b) 9t – 3p 2d	(c) 4d² –
		(c) 5q(5q – J)

(p) 2m - 4 (c) 22 + 5t

ANSWERS: 1) (a) 6 – 21f

Year 9 **EXPANDING AND FACTORISING**

Key Concepts

Expanding brackets Where every term inside each bracket is multiplied by every term all other brackets.

Factorising expressions

Putting an expression back into brackets. To "factorise fully" means take out the HCF.

Difference of two squares When two brackets are

repeated with the exception of a sign change. All numbers in the original expression will be square numbers.

& hegartymaths 160-166, 168, 169,223-228

		racionse runy.
Expand and sim	plify:	1) $16at^2 + 12at = 4at(4t + 3)$
1) $4(m+5) + 3$ = $4m + 20 + 3$ = $4m + 23$ 2) $(p+2)(2p-1)$ = $p^2 + 4p - p - 2$ = $p^2 + 3p - 2$	3) $(p+3)(p-1)(p+4)$ $= (p^2+3p-p-3)(p+4)$ $= (p^2+2p-3)(p+4)$ $= 2 = p^3 + 4p^2 + 2p^2 + 8p - 3p - 12$ $= p^3 + 6p^2 + 5p - 12$	2) $x^{2} - 2x - 3 = (x - 3)(x + 1)$ 3) $6x^{2} + 13x + 5$ = $6x^{2} + 3x + 10x + 5$ = 3x(2x + 1) + 5(2x + 1) = $(3x + 5)(2x + 1)$ 4) $4x^{2} - 25$ = $(2x + 5)(2x - 5)$
Key Words Expand Factorise fully Bracket Difference of two squares Key Words A)Expand: 1) $5(m-2) + 6$ 2) $(5g-4)(2g+1)$ 3) $(y+1)(y-2)(y+3)$ B) Factorise: 1) $5b^2c - 10bc$ 2) $x^2 - 8x + 15$ 3) $3x^2 + 8x + 4$ 4) $9x^2 - 25$ $(5-x\epsilon)(5+x\epsilon)(t+(2+x)(2+x\epsilon))(\epsilon)(5-x)(2-x)(2-4))(2-4)$		

Examples

Factorise fully:

Year 9 REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations: Working with inverse operations to find the value of a variable.

Rearranging an equation: Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we **undo the operations** starting from the last one.

A hegartymaths 177-186, 280-284, 287

DELTA

Academies Trust

Year 9 EQUATIONS IN CONTEXT

Key Concepts

Algebra can be used to support us to find unknowns in a contextual problem.

We can always apply a letter to an unknown quantity, to then set up an equation.

It will often be used in area and perimeter problems and angle problems in geometry.

DELTA

Academies Trust

operation

 $\Delta = ANNE$, $L = 3 \text{ therefore the longest length is 14 cm 2) lack = 9, <math>Jane = 21$, Sarah = 6