Year 9

EXPAND AND SIMPLIFY BRACKETS

Key Concepts

Expanding brackets

Multiply the number outside the brackets with EVERY term inside the brackets

Factoring expressions

Take the highest common factor outside the bracket．

戻 hegartymaths

160，161，168，189， 105， 106

Examples

Expand and simplify where appropriate
1）

2）
 ＝ $5 a$
$+16$

3）Factorise

$$
9 x+18=9(x+2)
$$

4）Factorise

$$
6 e^{2}-3 e=3 e(2 e-1)
$$

Questions

1）Expand and simplify
（a） $3(2-7 f)$
（b） $5(m-2)+6$
（c） $3(4+t)+2(5+t)$

2）Factorise
（a） $6 m+12 t$
（b） $9 t-3 p$
（c） $4 \mathrm{~d}^{2}-$

2d

Year 9

EXPANDING AND FACTORISING

Key Concepts

Expanding brackets

Where every term inside each bracket is multiplied by every term all other brackets．

Factorising expressions

Putting an expression back into brackets．To＂factorise fully＂ means take out the HCF．

Difference of two squares When two brackets are repeated with the exception of a sign change．All numbers in the original expression will be square numbers．

Examples

Expand and simplify：

1）

$=4 m+20+3$
$=4 m+23$

2）

$$
=p^{2}+4 p-p-2
$$

$$
=p^{2}+3 p-2
$$

3）$(p+3)(p-1)(p+4)$
$=\left(p^{2}+3 p-p-3\right)(p+4)$

$=p^{3}+4 p^{2}+2 p^{2}+8 p-3 p-12$
$=p^{3}+6 p^{2}+5 p-12$

Factorise fully：

$$
\text { 1) } \begin{aligned}
& 16 a t^{2}+12 a t=4 a t(4 t+3) \\
& \text { 2) } x^{2}-2 x-3=(x-3)(x+1) \\
& \text { 3) } 6 x^{2}+13 x+5 \\
&= 6 x^{2}+3 x+10 x+5 \\
&= 3 x(2 x+1)+5(2 x+1) \\
&=(3 x+5)(2 x+1) \\
& \text { 4) } 4 x^{2}-25 \\
&=(2 x+5)(2 x-5)
\end{aligned}
$$

联hegartymaths 160－166，168， 169，223－228

Key Words
Expand
Factorise fully Bracket
Difference of

A）Expand：
1） $5(m-2)+62)(5 g-4)(2 g+1) 3)(y+1)(y-2)(y+3)$
B）Factorise：
1） $5 \mathrm{~b}^{2} \mathrm{c}-10 \mathrm{bc}$ 2）$x^{2}-8 x+15$ 3） $3 x^{2}+8 x+4$ 4） $9 x^{2}-25$

Year 9

REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations:
Working with inverse operations to find the value of a variable.

Rearranging an equation:
Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Examples

Rearrange to make r the subject of the formulae :

$$
\begin{array}{cc}
& Q=\frac{2 r-7}{3} \\
\times 3 & \times 3 \\
& \\
& 3 Q=2 r-7 \\
+7 & \\
& 3 Q+7=2 r \\
\div 2 & \\
& \\
& \frac{3 Q+7}{2}=r
\end{array}
$$

\$ hegartymaths 177-186, 280-284, 287

Key Words Solve
Rearrange Term Inverse operation

1) Solve $7(x+2)=35$
2) Solve $4 x-12=28$
3) Solve $4 x-12=2 x+20$
4) Rearrange to make x the subject:
$y=\frac{3 x+4}{2}$

$$
\frac{\varepsilon}{\mp-\kappa 乙}=x \not(t \quad 9 \mathrm{I}=x \quad(\varepsilon \quad 0 \tau=x \quad \text { (乙 } \quad \varepsilon=x \quad(\tau: \text { Sy } \exists M S N \forall
$$

EQUATIONS IN CONTEXT

Key Concepts

Algebra can be used to support us to find unknowns in a contextual problem.

We can always apply a letter to an unknown quantity, to then set up an equation.

It will often be used in area and perimeter problems and angle problems in geometry.

Solve to find the value of x when the perimeter is 42 cm .

Examples

Jane is 4 years older than Tom.
David is twice as old as Jane.
The sum of their ages is 60 .
Using algebra, find the age of each person.

$$
\begin{array}{r}
\begin{array}{l}
\text { Tom }=x \longrightarrow 12 \\
\text { Jane }=x+4 \rightarrow 12+4=16 \\
\text { David }=2 x+8 \rightarrow(2 \times 12)+8=32 \\
x+x+4+2 x+8=60 \\
4 x+12=60 \\
4 x=48 \\
x=12
\end{array}
\end{array}
$$

康 hegartymaths

